Cotranslational and Posttranslational N-Glycosylation of Polypeptides by Distinct Mammalian OST Isoforms
نویسندگان
چکیده
Asparagine-linked glycosylation of polypeptides in the lumen of the endoplasmic reticulum is catalyzed by the hetero-oligomeric oligosaccharyltransferase (OST). OST isoforms with different catalytic subunits (STT3A versus STT3B) and distinct enzymatic properties are coexpressed in mammalian cells. Using siRNA to achieve isoform-specific knockdowns, we show that the OST isoforms cooperate and act sequentially to mediate protein N-glycosylation. The STT3A OST isoform is primarily responsible for cotranslational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The STT3B isoform is required for efficient cotranslational glycosylation of an acceptor site adjacent to the N-terminal signal sequence of a secreted protein. Unlike STT3A, STT3B efficiently mediates posttranslational glycosylation of a carboxyl-terminal glycosylation site in an unfolded protein. These distinct and complementary roles for the OST isoforms allow sequential scanning of polypeptides for acceptor sites to insure the maximal efficiency of N-glycosylation.
منابع مشابه
The Middle X Residue Influences Cotranslational N-Glycosylation Consensus Site Skipping
Asparagine (N)-linked glycosylation is essential for efficient protein folding in the endoplasmic reticulum (ER) and anterograde trafficking through the secretory pathway. N-Glycans are attached to nascent polypeptides at consensus sites, N-X-T/S (X ≠ P), by one of two enzymatic isoforms of the oligosaccharyltransferase (OST), STT3A or STT3B. Here, we examined the effect of the consensus site X...
متن کاملOST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation
The eukaryotic oligosaccharyltransferase (OST) is a membrane-embedded protein complex that catalyses the N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER), a highly conserved biosynthetic process that enriches protein structure and function. All OSTs contain a homologue of the catalytic STT3 subunit, although in many cases this is assembled with several addi...
متن کاملRibophorin I acts as a substrate-specific facilitator of N-glycosylation.
The mammalian oligosaccharyltransferase (OST) complex is composed of about eight subunits and mediates the N-glycosylation of nascent polypeptide chains entering the endoplasmic reticulum (ER). The conserved STT3 subunit of eukaryotic OST complexes has been identified as its catalytic centre, yet although many other subunits are equally well conserved their functions are unknown. We used RNA in...
متن کاملOxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins
Stabilization of protein tertiary structure by disulfides can interfere with glycosylation of acceptor sites (NXT/S) in nascent polypeptides. Here, we show that MagT1, an ER-localized thioredoxin homologue, is a subunit of the STT3B isoform of the oligosaccharyltransferase (OST). The lumenally oriented active site CVVC motif in MagT1 is required for glycosylation of STT3B-dependent acceptor sit...
متن کاملPosttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII.
N-glycosylation is normally a cotranslational process that occurs during translocation of the nascent protein to the endoplasmic reticulum. In the present study, however, we demonstrate posttranslational N-glycosylation of recombinant human coagulation factor VII (FVII) in CHO-K1 and 293A cells. Human FVII has two N-glycosylation sites (N145 and N322). Pulse-chase labeled intracellular FVII mig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 136 شماره
صفحات -
تاریخ انتشار 2009